3.500 \(\int (\frac {x^m}{(1-a^2 x^2)^2}+\frac {a x^{1+m}}{(1-a^2 x^2)^2}) \, dx\)

Optimal. Leaf size=70 \[ \frac {x^{m+1} \, _2F_1\left (2,\frac {m+1}{2};\frac {m+3}{2};a^2 x^2\right )}{m+1}+\frac {a x^{m+2} \, _2F_1\left (2,\frac {m+2}{2};\frac {m+4}{2};a^2 x^2\right )}{m+2} \]

[Out]

x^(1+m)*hypergeom([2, 1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/(1+m)+a*x^(2+m)*hypergeom([2, 1+1/2*m],[2+1/2*m],a^2*x^2
)/(2+m)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 1, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {364} \[ \frac {x^{m+1} \, _2F_1\left (2,\frac {m+1}{2};\frac {m+3}{2};a^2 x^2\right )}{m+1}+\frac {a x^{m+2} \, _2F_1\left (2,\frac {m+2}{2};\frac {m+4}{2};a^2 x^2\right )}{m+2} \]

Antiderivative was successfully verified.

[In]

Int[x^m/(1 - a^2*x^2)^2 + (a*x^(1 + m))/(1 - a^2*x^2)^2,x]

[Out]

(x^(1 + m)*Hypergeometric2F1[2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(1 + m) + (a*x^(2 + m)*Hypergeometric2F1[2, (2
 + m)/2, (4 + m)/2, a^2*x^2])/(2 + m)

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \left (\frac {x^m}{\left (1-a^2 x^2\right )^2}+\frac {a x^{1+m}}{\left (1-a^2 x^2\right )^2}\right ) \, dx &=a \int \frac {x^{1+m}}{\left (1-a^2 x^2\right )^2} \, dx+\int \frac {x^m}{\left (1-a^2 x^2\right )^2} \, dx\\ &=\frac {x^{1+m} \, _2F_1\left (2,\frac {1+m}{2};\frac {3+m}{2};a^2 x^2\right )}{1+m}+\frac {a x^{2+m} \, _2F_1\left (2,\frac {2+m}{2};\frac {4+m}{2};a^2 x^2\right )}{2+m}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 67, normalized size = 0.96 \[ x^{m+1} \left (\frac {a x \, _2F_1\left (2,\frac {m}{2}+1;\frac {m}{2}+2;a^2 x^2\right )}{m+2}+\frac {\, _2F_1\left (2,\frac {m+1}{2};\frac {m+3}{2};a^2 x^2\right )}{m+1}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^m/(1 - a^2*x^2)^2 + (a*x^(1 + m))/(1 - a^2*x^2)^2,x]

[Out]

x^(1 + m)*((a*x*Hypergeometric2F1[2, 1 + m/2, 2 + m/2, a^2*x^2])/(2 + m) + Hypergeometric2F1[2, (1 + m)/2, (3
+ m)/2, a^2*x^2]/(1 + m))

________________________________________________________________________________________

fricas [F]  time = 0.86, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a x^{m + 1} + x^{m}}{a^{4} x^{4} - 2 \, a^{2} x^{2} + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(-a^2*x^2+1)^2+a*x^(1+m)/(-a^2*x^2+1)^2,x, algorithm="fricas")

[Out]

integral((a*x^(m + 1) + x^m)/(a^4*x^4 - 2*a^2*x^2 + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a x^{m + 1}}{{\left (a^{2} x^{2} - 1\right )}^{2}} + \frac {x^{m}}{{\left (a^{2} x^{2} - 1\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(-a^2*x^2+1)^2+a*x^(1+m)/(-a^2*x^2+1)^2,x, algorithm="giac")

[Out]

integrate(a*x^(m + 1)/(a^2*x^2 - 1)^2 + x^m/(a^2*x^2 - 1)^2, x)

________________________________________________________________________________________

maple [C]  time = 0.84, size = 177, normalized size = 2.53 \[ \frac {\left (\frac {2 \left (-\frac {m^{2}}{4}+\frac {1}{4}\right ) x^{m +1} \left (-a^{2}\right )^{\frac {m}{2}+\frac {1}{2}} \Phi \left (a^{2} x^{2}, 1, \frac {m}{2}+\frac {1}{2}\right )}{m +1}-\frac {2 \left (-m -1\right ) x^{m +1} \left (-a^{2}\right )^{\frac {m}{2}+\frac {1}{2}}}{\left (m +1\right ) \left (-2 a^{2} x^{2}+2\right )}\right ) \left (-a^{2}\right )^{-\frac {m}{2}-\frac {1}{2}}}{2}-\frac {\left (\frac {m \,x^{m} \left (-a^{2}\right )^{\frac {m}{2}} \Phi \left (a^{2} x^{2}, 1, \frac {m}{2}\right )}{2}+\frac {\left (-m -2\right ) x^{m} \left (-a^{2}\right )^{\frac {m}{2}}}{\left (m +2\right ) \left (-a^{2} x^{2}+1\right )}\right ) \left (-a^{2}\right )^{-\frac {m}{2}}}{2 a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m/(-a^2*x^2+1)^2+a*x^(m+1)/(-a^2*x^2+1)^2,x)

[Out]

1/2*(2/(m+1)*(-1/4*m^2+1/4)*x^(m+1)*(-a^2)^(1/2*m+1/2)*LerchPhi(a^2*x^2,1,1/2*m+1/2)-2/(m+1)*(-m-1)/(-2*a^2*x^
2+2)*x^(m+1)*(-a^2)^(1/2*m+1/2))*(-a^2)^(-1/2*m-1/2)-1/2*(1/2*m*x^m*(-a^2)^(1/2*m)*LerchPhi(a^2*x^2,1,1/2*m)+1
/(m+2)*(-m-2)/(-a^2*x^2+1)*x^m*(-a^2)^(1/2*m))/a*(-a^2)^(-1/2*m)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a x^{m + 1}}{{\left (a^{2} x^{2} - 1\right )}^{2}} + \frac {x^{m}}{{\left (a^{2} x^{2} - 1\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(-a^2*x^2+1)^2+a*x^(1+m)/(-a^2*x^2+1)^2,x, algorithm="maxima")

[Out]

integrate(a*x^(m + 1)/(a^2*x^2 - 1)^2 + x^m/(a^2*x^2 - 1)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^m}{{\left (a^2\,x^2-1\right )}^2}+\frac {a\,x^{m+1}}{{\left (a^2\,x^2-1\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m/(a^2*x^2 - 1)^2 + (a*x^(m + 1))/(a^2*x^2 - 1)^2,x)

[Out]

int(x^m/(a^2*x^2 - 1)^2 + (a*x^(m + 1))/(a^2*x^2 - 1)^2, x)

________________________________________________________________________________________

sympy [C]  time = 2.79, size = 673, normalized size = 9.61 \[ - \frac {a^{2} m^{2} x^{3} x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + \frac {1}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) - 8 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} + \frac {a^{2} x^{3} x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + \frac {1}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) - 8 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} + a \left (- \frac {a^{2} m^{2} x^{4} x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + 1\right ) \Gamma \left (\frac {m}{2} + 1\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + 2\right ) - 8 \Gamma \left (\frac {m}{2} + 2\right )} - \frac {2 a^{2} m x^{4} x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + 1\right ) \Gamma \left (\frac {m}{2} + 1\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + 2\right ) - 8 \Gamma \left (\frac {m}{2} + 2\right )} + \frac {m^{2} x^{2} x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + 1\right ) \Gamma \left (\frac {m}{2} + 1\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + 2\right ) - 8 \Gamma \left (\frac {m}{2} + 2\right )} + \frac {2 m x^{2} x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + 1\right ) \Gamma \left (\frac {m}{2} + 1\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + 2\right ) - 8 \Gamma \left (\frac {m}{2} + 2\right )} - \frac {2 m x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + 2\right ) - 8 \Gamma \left (\frac {m}{2} + 2\right )} - \frac {4 x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + 2\right ) - 8 \Gamma \left (\frac {m}{2} + 2\right )}\right ) + \frac {m^{2} x x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + \frac {1}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) - 8 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} - \frac {2 m x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) - 8 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} - \frac {x x^{m} \Phi \left (a^{2} x^{2} e^{2 i \pi }, 1, \frac {m}{2} + \frac {1}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) - 8 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} - \frac {2 x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{8 a^{2} x^{2} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) - 8 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m/(-a**2*x**2+1)**2+a*x**(1+m)/(-a**2*x**2+1)**2,x)

[Out]

-a**2*m**2*x**3*x**m*lerchphi(a**2*x**2*exp_polar(2*I*pi), 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(8*a**2*x**2*gamma(m
/2 + 3/2) - 8*gamma(m/2 + 3/2)) + a**2*x**3*x**m*lerchphi(a**2*x**2*exp_polar(2*I*pi), 1, m/2 + 1/2)*gamma(m/2
 + 1/2)/(8*a**2*x**2*gamma(m/2 + 3/2) - 8*gamma(m/2 + 3/2)) + a*(-a**2*m**2*x**4*x**m*lerchphi(a**2*x**2*exp_p
olar(2*I*pi), 1, m/2 + 1)*gamma(m/2 + 1)/(8*a**2*x**2*gamma(m/2 + 2) - 8*gamma(m/2 + 2)) - 2*a**2*m*x**4*x**m*
lerchphi(a**2*x**2*exp_polar(2*I*pi), 1, m/2 + 1)*gamma(m/2 + 1)/(8*a**2*x**2*gamma(m/2 + 2) - 8*gamma(m/2 + 2
)) + m**2*x**2*x**m*lerchphi(a**2*x**2*exp_polar(2*I*pi), 1, m/2 + 1)*gamma(m/2 + 1)/(8*a**2*x**2*gamma(m/2 +
2) - 8*gamma(m/2 + 2)) + 2*m*x**2*x**m*lerchphi(a**2*x**2*exp_polar(2*I*pi), 1, m/2 + 1)*gamma(m/2 + 1)/(8*a**
2*x**2*gamma(m/2 + 2) - 8*gamma(m/2 + 2)) - 2*m*x**2*x**m*gamma(m/2 + 1)/(8*a**2*x**2*gamma(m/2 + 2) - 8*gamma
(m/2 + 2)) - 4*x**2*x**m*gamma(m/2 + 1)/(8*a**2*x**2*gamma(m/2 + 2) - 8*gamma(m/2 + 2))) + m**2*x*x**m*lerchph
i(a**2*x**2*exp_polar(2*I*pi), 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(8*a**2*x**2*gamma(m/2 + 3/2) - 8*gamma(m/2 + 3/
2)) - 2*m*x*x**m*gamma(m/2 + 1/2)/(8*a**2*x**2*gamma(m/2 + 3/2) - 8*gamma(m/2 + 3/2)) - x*x**m*lerchphi(a**2*x
**2*exp_polar(2*I*pi), 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(8*a**2*x**2*gamma(m/2 + 3/2) - 8*gamma(m/2 + 3/2)) - 2*
x*x**m*gamma(m/2 + 1/2)/(8*a**2*x**2*gamma(m/2 + 3/2) - 8*gamma(m/2 + 3/2))

________________________________________________________________________________________